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1 Introduction

In this report, we mainly discuss the performance of Support Vector Machine (SVM) [1] on the Human
Activity Recognition Dataset [2], which consists of the measurements of 30 participants’ activities of
daily living. There are in total six types of activities (walking, walking upstairs, walking downstars,
sitting, standing, and laying) and the objective is to classify the activities using measurements
from sensors. This forms a multiclass classification problem and we would like to analyse SVM’s
performance on this problem.

Concerning this dataset, it has been already split into the training set and test set. The training set
contains 7352 samples, which correspond to the continuous measurements of 21 participants. The
test set contains 2947 samples, corresponding to another 9 participants’ measurements. Therefore,
the data of one participant appears only in one subset and the algorithm has to learn the general
patterns of the data. For each sample (measurement), it contains 561 different features, the ID of
the participant, and the ground-truth label.

As a real-life dataset, there exists multiple difficulties for this dataset:

◦ Samples lie in a feature space of high dimension where they are normaly not linearly separable.
Therefore, we should consider using a feature mapping, i.e. using a kernel SVM, so that we
could separate the samples in a higher dimension space. Studies should be carried out to
compare different kernels, e.g. linear kernel, polynomial kernels and Gaussian kernels.

◦ As the dataset contains thousands of samples and each sample has hundreds of features, the
number of variables in the optimization might be large. Optimization methods using Hessian
matrix could be slow. As a result, we should pay attention to the cost of optimization method
and avoid using methods like Newton’s method which has to calculate the Hessian matrix and
to solve linear systems.

◦ Since there are six different classes, we need to consider how to extend SVMs into multiclass
cases. As there are at least two different methods: one-versus-one and one-versus-all, we need
to compare the performance and the efficiency of both methods.

◦ In fact, the different classes in this dataset are not unbalanced as shown in table 1. Therefore
unbalanced data is not one of the difficulties.

The rest of the report is organized as follows. Section 2 derives the primal and dual problems for
hard-margin and soft-margin SVM, introduces the kernel-based SVM, and presents two methods
to generalize the SVM to multiclass case. Section 3 presents two different optimization algorithms
to solve SVM: sequential minimal optimization and penalty method. Then section 4 presents the
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Activity Training Test

Walking 1226 496
Walking upstairs 1073 471
Walking downstars 986 420

Sitting 1286 491
Standing 1374 532
Laying 1407 537

Table 1: Sample count in different classes

experiment results and analysis using SVMs with different settings. At last, section 5 summarizes
the results from experiments.

2 Support Vector Machine

2.1 Binary SVM

2.1.1 Hard-margin SVM

Consider a dataset {(xi; yi)}Ni=1 with xi ∈ RD and yi ∈ {−1; 1}, if the data points are linearly
separable, i.e. there exists w ∈ RD and d ∈ R such that (w|xi+ b)yi ≥ 1 for all i, then we would like
to find the hyper-plane that separates the data points with the largest margin. Margin is the smallest
distance from data points to the hyper-plane and it equals to 1

kwk2
for hyper-plane w| + b = 0. This

problem can be formulated as the following optimization problem:

minimize
w;b

1

2
‖w‖2 (1a)

s.t. (w|xi + b)yi ≥ 1 (1b)

Above is the primal problem of hard-margin SVM.

This problem can be solved by considering the following Lagrangian,

L(w; b; �; �; �) =
1

2
‖w‖2 +

nX
i=1

�i(1− yi(w|xi + b))

with dual variable constraints �i ≥ 0. Since

◦ The primal objective function is convex.

◦ The primal variable constraints are linear and there’s also a setting of variable values satisfying
the constraints. Therefore constraint functions satisfy Slater’s conditions.

The strong duality holds, i.e. the primal optimal objective and the dual optimal objective are equal.
Moreover, the primal objective function and the constraints are all differentiable, thus the following
Karush-Kuhn-Tucker (KKT) [3] conditions are sufficient and necessary for the optimality.

◦ Primal feasibility
(w|xi + b)yi ≥ 1; ∀i
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◦ Dual feasibility
�i ≥ 0; ∀i

◦ Complementary slackness
�i(1− yi(w|xi + b)) = 0; ∀i

◦ Zero derivatives
@L

@w
= w −

nX
i=1

�iyixi = 0

@L

@b
=
X
i

yi�i = 0

Using the zero derivatives in KKT conditions, we can substitute the primal variables by dual variables
and the dual problem is therefore defined as follows:

maximize
�

NX
i=1

�i −
1

2

NX
i=1

NX
j=1

�i�jyiyjx
|
i xj (2a)

s.t. 0 ≤ �i;
NX
i=1

�iyi = 0 (2b)

The KKT conditions also gives w =
Pn

i=1 �iyixi. Therefore, for any x, the prediction ŷ is

ŷ =
nX
i=1

�iyix
|
i x (3)

Above is the dual problem of hard-margin SVM.

2.1.2 Soft-margin SVM

However, in real-life problems, data points are not always linearly separable. For this case, we could
still maximizing the margin while penalizing the errors:

minimize
w;b

1

2
‖w‖2 + C

NX
i=1

L(yi; w
|xi + b) (4)

where L(y; ŷ) is a loss function for the prediction ŷ and the true label y, and C is the coefficient
controls the trade-off between the margin and errors.

Ideally, we would like to use L(y; ŷ) = 1yŷ<0 which equals 1 if yŷ < 0 and 0 otherwise. However,
this function is not differentiable at yŷ = 0, making it hard to solve the optimization problem. As a
result, we use the hinge loss function L(y; ŷ) = 11�yŷ>0. With the substitution �i = L(yi; w

|xi + b),
the optimization problem is as follows:

minimize
w;b

1

2
‖w‖2 + C

NX
i=1

�i (5a)

s.t. (w|xi + b)yi ≥ 1− �i (5b)
�i ≥ 0 (5c)
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Above is the primal problem of soft-margin SVM.

To solve this problem, similar as before, we could derive the Lagrangian and solve the dual problem
instead. The Lagrangian defines as follows:

L(w; b; �; �; �) =
1

2
‖w‖2 + C

nX
i=1

�i +
nX
i=1

�i(1− yi(w|xi + b)− �i) +
nX
i=1

�i(−�i)

with dual variable constraints �i ≥ 0 and �i ≥ 0.

For the same reasons as in hard-margin SVM, the strong duality holds and KKT conditions are
sufficient and necessary for the optimality.

◦ Primal feasibility
(w|xi + b)yi ≥ 1− �i; ∀i

�i ≥ 0; ∀i

◦ Dual feasibility
�i ≥ 0; ∀i

�i ≥ 0; ∀i

◦ Complementary slackness

�i(1− yi(w|xi + b)− �i) = 0; ∀i

�i(−�i) = 0; ∀i

◦ Zero derivatives
@L

@w
= w −

nX
i=1

�iyixi = 0

@L

@b
=
X
i

yi�i = 0

@L

@�i
= C − �i − �i = 0

Substituting the primal variables by dual variables, the dual problem is defined as follows:

maximize
�

NX
i=1

�i −
1

2

NX
i=1

NX
j=1

�i�jyiyjx
|
i xj (6a)

s.t. 0 ≤ �i ≤ C;

NX
i=1

�iyi = 0 (6b)

Above is the dual problem of hard-margin SVM. For prediction, it’s same as (3).

In particular, if we set C → +∞, i.e. the penalty of violations of constraints is infinitely large, the
dual problem (6) becomes (6) by removing the constraint �i ≤ C.
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2.1.3 Kernel SVM

To deal with non-separable datasets, we could apply a feature function � : X → H; x 7→ �(x) so
that we can try to separate the data points in the feature space (often a high-dimension space). Let
k be a valid semi-positive definite kernel k : X × X → R such that k(xi; xj) = 〈�(xi); �(xj)〉, the
inner product of the features of xi and xj in the feature space. By replacing xi by �(xi) and using
the kernel function, the dual problem (6) becomes,

maximize
�

NX
i=1

�i −
1

2

NX
i=1

NX
j=1

�i�jyiyjk(xi; xj) (7a)

s.t. 0 ≤ �i ≤ C;
NX
i=1

�iyi = 0 (7b)

Above is the dual problem of kernel SVM [4]. In particular, the dual problem defined (6) is a
special case with k(xi; xj) = x|

i xj. For any x, the prediction ŷ is

ŷ =
nX
i=1

�iyik(xi; x) (8)

We could also derive the primal problem of Kernel SVM. Let the feature space be H, a reproducing
kernel Hilbert space (RKHS), i.e. ∀x ∈ X ;∀f ∈ H:

�(x) = k(·; x) ∈ H;
〈f; k(·; x)〉H = f(x):

Replacing the x by its feature �(x) = k(·; x) and use 〈·; ·〉 to present the inner product, then opti-
mization problem (4) becomes:

minimize
w

 
1

2
‖w‖2

H + C
nX
i=1

L(yi; 〈w; k(·; x;i)〉H)

!
As w can be decomposed as w = w? + wk where wk ∈ span({k(·; xi)}i) and w? ⊥ span({k(·; xi)}i),
the objective can be represented as:

1

2
‖wk‖2

H +
1

2
‖w?‖2

H + C

nX
i=1

L(yi; 〈wk; k(·; x;i)〉H)

Thus, we can derive that the optimal solution must have w? = 0 as w? doesn’t appear in the loss
term and can be set to zero to minimize the objective. Thus wk is a linear combination of k(·; xi):

wk =
NX
i=1

�ik(·; xi)

Then problem (5) becomes:

minimize
�

1

2

NX
i=1

NX
j=1

�i�jk(xi; xj) + C
NX
i=1

�i (9a)

s.t. yi

nX
j=1

�jk (xi; xj) ≥ 1− �i (9b)

�i ≥ 0 (9c)
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Above is theprimal problem of kernel SVM [4]. For any x, the prediction ŷ is

ŷ =
nX

i =1

� i k(x i ; x) (10)

2.2 Multiclass SVM

To generalize the one-class SVM to multiclass, there are two methods: "one versus all" and "one
versus one" [5].

2.2.1 One versus all

For the classi�cation ofN classes, one versus all means that, the �nal classi�er consists ofN classi�ers.
The n-th classi�er is trained/optimized to distinguish if a sample belongs then-th class or not. The
output is a score/probability that the sample belongs to then-th class. Therefore, for a given sample,
N classi�ers output N scores and the �nal prediction is the class having highest score.

2.2.2 One versus one

For the classi�cation of N classes, one versus ones means that, the �nal classi�er consists ofN (N � 1)
2

classi�ers. The (n; m)-th classi�er is trained/optimized to distinguish if a sample belongs then-th
class or them-th class. The output is whether classn or classm. Therefore, for a given sample, all
classi�ers output N (N � 1)

2 predictions and the �nal prediction is the class having highest vote.

3 Optimization

To solve the optimization problem of SVM, we choose to focus on the dual problem (7). In this
section, we mainly introduce two di�erent methods: sequential minimal optimization, which provides
a closed form of solution to SVM; and augmented Lagrangian methods, which is a generic method
for quadratic optimization problems.

3.1 Sequential Minimal Optimization

To solve the optimization problem (7), one largely used algorithm is Sequential Minimal Optimization
(SMO) [6, 7] algorithm. The main idea of SMO is to choose two dual variable randomly and to
maximize the dual objective function with respect to them. The reason that we can't perform
coordinate ascent, i.e. optimize the objective with respect to only one variable, is because of the

constraint
NP

i =1
� i yi = 0, which ties the variables together.

To derive the SMO algorithm, without the loss of generality, we assume that� 1 and � 2 are the two
variables to be updated. Let their previous values be� old

1 and � old
2 . Denote K ij = k(x i ; x j ), and
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s = y1y2. Removing the irrelevant terms, the dual problem (7) becomes:

maximize
� 1 ;� 2

� 1 + � 2 �
1
2

(K 11� 2
1 + K 22� 2

2 + 2sK 12� 1� 2 + 2
2X

i =1

� i yi

NX

j =3

� j yj K ij )

s.t. 0 � � 1 � C

0 � � 2 � C

� 1y1 + � 2y2 = � old
1 y1 + � old

2 y2

Let  = � old
1 + s� old

2 . From the constraint, asyi 2 f� 1; 1g, we have

� 1 = ( � old
1 y1 + � old

2 y2 � � 2y2)y1 =  � s� 2

Denote alsovi =
NP

j =3
� j yj K ij , the objective becomes:

 � s� 2 + � 2 �
1
2

(K 11( � s� 2)2 + K 22� 2
2 + 2sK 12( � s� 2)� 2 + 2(  � s� 2)y1v1 + 2� 2y2v2)

=( K 12 �
1
2

K 22 �
1
2

K 11)� 2
2 + (1 � s + y2v1 � y2v2 � sK 12 + sK 11)� 2 + ( const w.r.t. � 2)

In fact, the prediction for x i using � old
1 ; � old

2 is:

ŷi =
NX

j =1

� j yj K ij = � old
1 y1K i 1 + � old

2 y2K i 2 + vi

Thus,

1 � s + y2v1 � y2v2 � sK 12 + sK 11

=1 � s

+ y2(ŷ1 � � old
1 y1K 11 � � old

2 y2K 12) � y2(ŷ2 � � old
1 y1K 21 � � old

2 y2K 22)

� (y1y2� old
1 + � old

2 )K 12 + ( y1y2� old
1 + � old

2 )K 11

=1 � s + ( � 2K 12 + K 22 + K 11)� old
2 + y2(ŷ1 � ŷ2)

= y2((y2 � ŷ2) � (y1 � ŷ1)) + ( � 2K 12 + K 22 + K 11)� old
2

Denote� = 2K 12 � K 22 � K 11, we have� � 0 sinceK is semi positive-de�nite. Let ei = yi � ŷi , then
the problem becomes

max
1
2

�� 2
2 + ( y2(e2 � e1) � �� old

2 )�

s.t. 0 �  � s� 2 � C

0 � � 2 � C

The objective is concave and setting the derivative of the objective with respect to� 2 to zero gives:

� �
2 = �

y2(e2 � e1)
�

+ � old
2

� If y1 = y2 so that s = 1, the constraint for � 1 becomes� C +  � � 2 �  . Thus,

max(� C + ; 0) � � 2 � min(; C )
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� If y1 6= y2 so that s = � 1, �  � � 2 � C �  . Thus,

max(� ; 0) � � 2 � min(C � ; C )

In general, to optimize the objective, we can calculate the� �
2 and assign� 2 depending on if it's in

the feasible area[L; R ], i.e. the constraint isL � � 2 � R.

� If � < 0

� If � �
2 2 [L; R ], we assign� 2 = � �

2.

� Otherwise, we choose betweenL or R to maximize the objective.

� if � = 0, the objective function is linear, therefore we choose betweenL or R to maximize the
objective.

To choose the two dual variables in each iteration to update, we can use the following method:

� Loop � 1 over all possible choices.

� Choose� 2 which maximizeje2 � e1j.

In summary, the SMO algorithm is as follows

� Initialize � to zero.

� Repeat to loop over all� i until convergence, i.e. the decrease of objective value of (7) is small
enough.

� Calculate the predictionsy and errorse.

� Choose� j with i 6= j such that jei � ej j is maximized.

� Optimize the objective function with respect to both� i and � j .

Concerning the convergence of SMO, as it optimizes two variables each time and the objective is
always increasing, SMO will converge and the solution would be at least stationary.

3.2 Augmented Lagrangian Method

Rewrite the dual problem (7) in a vector form:

minimize
�

1
2

� | (K � yy| )� � � | 1N

s.t. � � � 0;

� � C � 0;

y| � = 0;

To solve this problem, we could use the augmented Lagrangian (AL) [8] method. That is to move
the equality constraint into the objective function using a loss function so that the violations of
constraints will be penalized. The box constraints of� are not moved. Instead, we use projection
after each iteration.

Precisely, for AL method, we introduce an extra variable� and a parameter � , which controls
the trade-o� between the objective and penalty. We solve a series of optimization problems with
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increasing� . For a �xed � , the optimization problem is de�ned as follows:

minimize
�

Q(�; � ; � ) =
1
2

� | (K � yy| )� � � | 1N + � y | � + � l (y| � )

s.t. � � � 0;

� � C � 0;

wherel(u) is a loss function, which can beL2 lossl(u) = 1
2u2 or L1 lossl(u) = juj.

To minimize Q(� ; �; � ), we apply the backtracking line search using gradientr Q(� ; � ):

r � Q(�; � ; � ) = ( K � yy| )� � 1N + � y + � l 0(y| � )y

r � Q(�; � ; � ) = y| �

Here the search directionp is chosen to be�r Q(� ; � ) because the calculation of Hessian and solving
linear system are expensive.

In summary, the augmented Lagrangian method is:

� Initialize �; �; �; � : � = 01, � = � 0, � = � 0.

� Initialize backtracking parametersa = 1, � 2 (0; 1), c 2 (0; 1).

� Repeat for a certain number of iterations:

� Minimize Q(�; � ; � )

* Calculate the gradientr Q(� ; � ).

* Minimize Q(�; � ; � ) using backtracking line search withp = �r Q(� ; � ):

· Let x = [ � ; � ].

· While f (x + ap) > f (x) + ca p| r f (x):
a = �a .

� � = �� .

Regarding the convergence, given� , let x = [ � ; � ], as we are using back tracking line search method
with gradient, we have the following convergence theory [9] if the line search is exact:

kxk+1 � x � k2
Q �

�
� N � � 1

� N + � 1

� 2

kxk � x � k2
Q

where xk represents the solution atk-th iteration, kxk+1 � x � kQ = Q(� k ; � k ; � ) � Q(� � ; � � ; � ), and
0 � � 1 � � � � � � N are the eigenvalues ofr 2Q(�; � ; � ) = K + � [l00(y| � )yy| ].

The theory states that in the best case, we could have a linear convergence. However, we could not
guarantee that the line search is exact as we break the loop as soon asf (x + ap) > f (x)+ ca p| r f (x).
We doesn't guarantee the minimization of the quadratic part. Intuitively, we expect to have probably
a sublinear convergence as the line search is not exact.

Actually, as we also uses the projection to satisfy the box constraint, in [10], it is proved that the
proximal gradient method has sublinear rate of convergence:

kxk � x � k2
Q �

aL kx0 � x � k2
2

2k
1To compare with SMO later, we choose to initialize � at the same point. Otherwise, � could be initialized

randomly. It does not have to satisfy all constraints.
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whereL is the Lipschitz constant ofr Q(� k ; � k ; � ).

Thus, AL method should have sublinear convergence.

4 Experiment

In this section, we will test SVM on the human activity recognition dataset and analyse the per-
formance with di�erent settings. As the hard-margin SVM could be considered as a special case of
soft-margin SVM with a large enoughC. We focus on the soft-margin SVM in all experiments.

In the following studies, we �rst compare the performance of di�erent kernels (linear, polynomial,
and Gaussian), where kernels with di�erent parameters are treated as di�erent kernels. Choosing
the kernel with best performance, we then train the SVM with di�erent C to study its in�uence
on regularization. We also study the regularization in augmented Lagrangian method with di�erent
� . As the multiclass SVM is actually a set of multiple SVMs, the above studies will be carried
out for two chosen classes, making the problem binary so that we could study the convergence of
optimisation algorithms. At last, using the best setting on binary case, we extend to multiclass SVM
and compare the performance of two di�erent methods.

4.1 Binary SVM

As the dataset contains multiple classes, we �rst choose two classes (standing and sitting). The
subset contains2660samples in training set and1023samples in test set2. The metric is accuracy.
As the samples are well distributed among di�erent classes as shown in table 1, we don't have to use
F1 score and we believe the accuracy is enough.

4.1.1 Kernels

We �rst compare the performance of di�erent kernels. We focus on two types of kernels:

� Polynomial: k(x i ; x j ) = ( x |
i x j + 1) p

� Gaussian:k(x i ; x j ) = exp( �  kx i � x j k)

Except the parameters of kernels, other parameters are �xed as follows:

� Dual problem
C = 1.

� Optimization algorithm

� SMO

* Tolerance" = 10� 4.

* The SMO algorithm has to loop over all� i at least once to avoid saddle point due to
numerical machine errors.

2Regarding to the comparison, in theory, we should separate the training set into a subset and a validation set in
order to tune the hyper parameters or we should use cross-validation to evaluate. However, experiments show that the
di�erent between validation accuracy and test accuracy is relatively small and the test accuracy is enough to evaluate
the solution. As this topic is not closely related to this project and also that the cross-validation takes too much time
specialy for AL method, we choose to only use the performance on test set accuracy to do comparison.

10



� Augmented Lagrangian method3

* L2 loss is usedl(u) = 1
2u2.

* � = 1, � = 10.

* The number of iteration is 5000.

* In backtracking, a is initialized at 2, � = 0:5, and c = 10� 4. a is chosen to be larger
than 2 in order to favor a larger step.

The performances are presented in table 24. We could observe that:

� Both optimization methods are able to achieve a relatively high accuracy using polynomial and
Gaussian kernels. It proves that the implementation of both methods and kernels are correct.

� For both SMO and AL, using Gaussian kernel provides a signi�cant better performance than
polynomial kernels. This is reasonable as the Gaussian kernel implies actually a feature map
with in�nite number of features while the polynomial kernel only consider the interactions up
to a certain degree. With a larger function space, Gaussian kernel outperforms the polynomial
kernel.

Also, the features of polynomial kernel are mainly interactions betweenx id x jd , wherex id rep-
resents the d-th feature ofx i . While the Gaussian kernel's features are based onx id � x jd .
While doing a classiciation task, subtraction should be more meaningful than the product as
we expect similar samples will have smaller distance and therefore their kernel score is higher.
Therefore, it is not surprising to observe that Gaussian kernel achieves higher accuracy.

� With Gaussian kernel using di�erent  , we could observe that if is too large, the accuracy
tend to decrease. The possible explanation is that, for a pair of samplesx; x0, larger  makes
k(x; x0) smaller, therefore they tend to be more similar. This means that the classi�er is less
sensitive, reducing its classi�cation capacity and making the accuracy smaller.

� With the same Gaussian kernel, AL's accuracy is slightly better than SMO. The reason might
be that SMO updates only two� at each iteration. As the solution converges within one loop
over all variables, the �nal solution might be a stational point instead of the optimal one.
Futher, during the experiments, we also observed that with more iterations, AL's performance
is better. This is normal as with more iteration, the solution is closer to the optimal.

Concerning the e�ciency, generally SMO spends less than twenty seconds while AL needs
around three minutes. This is reasonable as the SMO updates only two� i at each iteration
and the closed-form solution exists, making the optimization problem small and easy. But AL
has to update all variables at the same time using only the gradient, which is not informative
enough and quite slow.

Thus, in general, SMO is better as it is much faster and has a competitive performance with
Gaussian kernel.

In conclusion, the experiments show that Gaussian kernels outperforms polynomial kernel and SMO
is faster and good enough compared to AL.

3During experiments, we found that �xing the total number of iteration N , it is better to �x � and updateQ(�; � ; � )
N times instead of optimizing M problems with increasing � and update Q(�; � ; � ) N

M times each. Therefore, in all
experiments, we choose to �x� and update Q(�; � ; � ) for a certain number of iterations.

4For AL with Polynomial p = 2 ; 3, the solution is initialized randomly. With zero initialization, the gradient
vanished.
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Kernel SMO AL

Polynomial (p = 1) 83.68% 91.59%
Polynomial (p = 2) 64.13% 87.29%
Polynomial (p = 3) 58.94% 48.00%
Gaussian ( = 0:1) 88.37% 93.16%
Gaussian ( = 0:2) 90.22% 90.62%
Gaussian ( = 0:5) 87.19% 86.61%

Table 2: Accuracy on test set of di�erent kernels.

(a) Objective function of SVM (b) �

(c) Q(�; � ; � ) (d) � | 1N

Figure 1: Convergence of SMO and AL
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To further study the convergence of two di�erent optimization methods, the experiment with Gaus-
sian Kernel ( = 0:2) is chosen to be analysed.

In �gure 1(a) , the curves of the SVM objective 1
2 � | (K � yy| )� � � | 1N is plotted. The y-axis is

log scale and we can observe that SMO converges faster than AL although they all have sublinear
convergence. The range of� i is plotted in �gure 1(b) for both methods. We can observe that

� The minimum of � i is always zero for SMO and is nearly zero for AL.

� The maximum of � i for AL increases linearly. But for SMO, the maximum of� i increases
quickly and converges to1 = C.

Further, as the solution of AL doesn't always satisfy the constraints and the objective it optimizes
contains two extra penality terms, the curve of theQ(�; � ; � ) is plotted in �gure 1(c) and the sum
of � i is presented in �gure 1(d). We can observe that:

� AL method does have a sublinear convergence as analysed in [10].

� The sum of� i is decreasing but not small enough. It could be �xed by using multiple iterations
with increasing� , however this delivers worse performance. Alternatively, we could also adjust
the value of � , which will be studied below.

4.1.2 Regularization

As presented in the derivation of soft-margin SVM,C is the weight of the loss, to balance the trade-
o� between the loss and the smoothness of the classi�er. That is, with largeC, the classi�er tends
to care more about errors and therefore the classi�er could be less smooth, making the SVM easier
to over�t the data. In contrast, small C will make the SVM under�t the data.

To verify this theory, we test the SVM with Gaussian kernerl ( = 0:2) with three di�erent C:
0:05; 0:2; 1; 5; 10. Other parameters are set as before. The accuracy is presented in table 3. We can
observe that:

� SMO method is robust against the change ofC. It might be because the solution is only
stationary instead of being optimal. In fact, the optimal solution is not the best choice since it
will make the classi�er over�t to the training data and lose the generalization capacity.

� AL method is more sensitive to the change ofC. It's performance drops signi�cantly with
small C as smallerC tolerate more violations of constraints, therefore it reduces the capacity
of the classi�er. It is under�tting.

Concerning largeC, the performance doesn't decrease. The assumption is that releasing the
constraint might not change the optimal solution. In other words, there might exist some
irreducible error such that even the penalty is higher, we still can not reduce it further. This
is also con�rmed in �gure 2, whereC = 5 but the maximum of � i with SMO converges to
1:75 < C .

Thus, given the experiments results,C = 5 is more appropriate and we will �x C to this value in all
further experiments.

For AL, as we choose to �x � (we found that it is better than solving a series of optimization
problems), we should also study the in�uence of� in the objective function. Similarly, we expect
that with large � , the algorithm would care more about the constraint, therefore

P

i
� i would be

smaller.
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Figure 2: � with = 5

C SMO AL

0:05 90.32% 81.04%
0:2 90.32% 86.71%
1 90.22% 90.62%
5 90.71% 90.62%
10 90.71% 90.62%

Table 3: Accuracy on test set of di�erentC.

With C = 5, � = 1; 2; 5; 10; 20; 50 have been tested with AL. We can observe that too small� or too
large � both deteriorate the performance. The plots of� | 1N is also presented in �gure 3. We can
see that for � = 1; 2, � | 1N is diverging instead of converging, this might because compared to the
SVM objective, as� is too small, violation of the constraint is not that important. When � becomes
larger, � | 1N becomes smaller. The performance decreases might because large� limits the choice of
� .

Combining the accuracy table and the plots, the best value of� should be5 and we will �x � to this
value in all further experiments.

� AL

1 52.00%
2 93.45%
5 92.57%
10 90.62%
20 88.47%

Table 4: Accuracy on test set of di�erent� .
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