# Computer Vision (CMU)

http://www.cs.cmu.edu/~16385/

Computer Vision: Algorithms and Applications

Multiple View Geometry (best reference for geometry and vision)

# Image processing

## Basics of filtering

• Convolution ($f*g$)
• 1d/2d, continue/discrete

$(f*g)(x)=\int\limits f(y)g(x-y)dy$

f = filter, g = signal

• separable ($M\times M$ pixels with $N\times N$ filter)

non-separable $M^2\times N^2$

separable $2\times M^2\times N$

Blur the image first then calculate the gradient

Because $\frac{\partial}{\partial x}(h*f) = (\frac{\partial}{\partial x} h) * f$, do the convolution with the derivative of filter (Gaussian)

• 2D Gaussian filters
• Gaussian

$h_\sigma(u,v)=\frac{1}{2\pi\sigma^2}\exp(-\frac{u^2+v^2}{2\sigma^2})$

• Derivative of Gaussian

$\frac{\partial}{\partial x}h_\sigma(u,v)$, x can be u or v

• Laplacian of Gaussian (LoG) filter

$\nabla^2h_\sigma(u,v)$

• Gabor filters

$\exp(-\frac{u^2+v^2}{2\sigma^2})\cos(2\pi(k_uu+k_vv))$

## Image pyramids

• Gaussian pyramid
• Algorithm Repeat until min resolution reached
• Use Gaussian filter to smooth the image
• Subsample (e.g. remove even rows and cols)
• Can’t recover the image from upper level (blurring is losy)
• Laplacian pyramid
• Downsample Algorithm Repeat until min resolution reached
• Use Gaussian filter to smooth the image
• Calculate the residual (retain the residuals instead of blurred images)
• Subsample
• Upsample Algorithm Repeat until original resolution reached
• Upsample
• Sum with residual
• Why called Laplacian x - Gaussian(x) ~= Laplacian(x)
• Other pyramids
• Steerable pyramid (each level keeps multiple directions)
• Wavelets
• Fourier transform ($\mathcal{F}(g)$) Discrete Fourier transform (DFT) is a matrix multiplication $F=Wf$, in practice is implemented using fast Fourier transform (FFT)

Convolution theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$\mathcal{F}(g*h)=\mathcal{F}(g)\mathcal{F}(h)$

$\mathcal{F}^{-1}(gh)=\mathcal{F}^{-1}(g)*\mathcal{F}^{-1}(h)$

## Hough transforms

• Line parameterizations
• Slope intercept form $y=mx+b$
• Double intercept form $\frac{x}{a}+\frac{y}{b}=1$
• Normal form $x\cos\theta+y\sin\theta=\rho$
• Hough transform
• Image space x, y are vars and theta, rho are parameters
• Parameter space theta, rho are vars and x, y are parameters One point in image space becomes a curve in parameter spaces (all lines that pass the point). The local maximum in parameter space corresponds to detected lines in image space. • Hough circles […]

# Feature detection and correspondences

## Corner detection

• Error function

$E(u,v)=\sum\limits_{x,y}w(x,y)(I(x+u,y+v)-I(x,y))^2$

E: error function, w: window function (e.g. Gaussian, or 1 in window 0 outside), I: intensity

Using Taylor expansion, approximate E as

$E(u,v)=\begin{bmatrix}u&v\end{bmatrix}M\begin{bmatrix}u \\ v\end{bmatrix}$ $M=\sum\limits_{x,y}w(x,y)\begin{bmatrix}I_x^2 & I_xI_y \\ I_xI_y & I_y^2\end{bmatrix}$
• Calculate eigen values of $M$:

$M=R^{-1}\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_2\end{bmatrix}R$
• Corners
• $\lambda_1\approx\lambda_2$ and both large: corner
• $\lambda_1\approx\lambda_2$ and both small: flat
• $\lambda_1\gg\lambda_2$: vertical edge
• $\lambda_2\gg\lambda_1$: horizontal edge
• Detectors
• Harris & Stephens: $\det M - \kappa\text{Trace}^2 M$
• invariant to intensity shift ($I+b$) or scale ($aI$)
• not invariant to scale of image
• Kanade & Tomasi: $\min(\lambda_1,\lambda_2)$
• Nobel: $\frac{\det M}{\text{Trace} M + \varepsilon}$
• Multi-scale blob detection

• For each level of Gaussian pyramid compute feature response
• For each level of Gaussian pyramid if the response is local maximum cross scale, save scale and location of feature (x,y,s)

## Feature descriptors

• Basics
• Image patch (vector of intensity values, e.g. for a 3 * 3 neighbor)
• Image gradient (difference of intensity values)
• Color histogram (count colors), invariant to scale and rotation
• Spatial histograms (compute histograms over spatial cells)
• Orientation normalization (use the dominant image gradient direction to normalize the patch)
• Multi-Scale Oriented Patches (MOPS)
• Given a feature (x, y, s, theta)
• Get a 40 * 40 image patch along the direction theta (possible interpolation for pixels), subsample to 8 * 8 (low frequency filtering to absorb localization error)
• Subtract the mean and divide by standard deviation
• Haar wavelet transform
• Histograms of Oriented Gradients (HOG)

• Given a image, calculate the gradient (magnitude & direction) using filters (e.g. Sober)
• Divide images into cells of size 8 * 8
• Create a histogram of gradient directions, containing 9 bins 0, 20, 40, …, 160 (if the angle is 165, with magnitude M, put M/4 to bin 0 and 3M/4 to bin 160)
• Normalize the histogram Consider block of size 16 * 16, with stride 8, for each block, concatenate the histogram counts into a vector, and stored the normalized vector Concatenate all the normalized vectors of all blocks into a giant vector as the HOG feature vector
• Scale Invariant Feature Transform (SIFT)

http://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/

• scale space (SIFT suggests 4 octaves and 5 blur levels, so 20 images in total)
• take the original image, blur it progressively (this series of images called an octave)
• resize the image to half, blur it progressively
• LoG approximations for each octave, calculate the difference between images (difference of Gaussian approximate laplacian)
• Find key points
• locate maxima/minima in DoG A pixel is key point if it’s largest/smallest of all 26 neighbors (8 in the same blur scale, 9 in the previous blur scale, and 9 in the later blur scale)
• Find subpixel maxima/minima Use interpolation (taylor expansion) on marked key points to find the extreme points between pixels

5 blur levels give 4 DoG, which gives two extrema images • Remove low contrast key points

• Remove low contrast features (if the intensity is below a threshold, reject the point)
• Remove edges (calculate x, y gradients at the key point (eigenvalues of M), reject the point if the ratio of two eigenvalues is large)
• Key point orientations

Until now, for each key point, we have the location (x, y) and scale s (the Gaussian variance is sigma), need to determine the direction theta

• The magnitude and orientation is calculated for all pixels in a window (size is 1.5 sigma) around the key point
• The orientations are broken into 36 bins (10 degrees each), the histogram is blurred by 1.5 sigma.
• The key point is assigned to the histogram peak
• The key point is also assigned to any peak above 80% of the highest (creating a new key point with same location and scale but different orientation)
• Generate a feature

Now, for each key point we have location (x, y), scale s, and orientation theta. For each key point,

• Consider a 16 * 16 window around it, break the window into sixteen 4 * 4 small windows (we have 16 small windows)
• Within each small window, gradient magnitudes and orientations (the key point’s orientation theta is subtracted, so it’s relative orientations) are calculated, and put into a 8 bin histogram (45 degrees each), the amount added also depends on the distance from the key point. So each small window as 8 features (for 8 bins)
• 16 small windows give in total 128 features (can cap the features at 0.2, any number >= 0.2 is replaced by 0.2)

# Transformations and geometry

Transformation $x’=f(x;p)$

## Homographies

• Projective space A projective space is roughly the set of the lines passing through the origin. • Homography A homography is an isomorphism of projective spaces.

• Transformation Affine transformation (combinations of linear transformations and translations)

$\begin{bmatrix}x'\\y'\\1\end{bmatrix}=\begin{bmatrix}*&*&*\\*&*&*\\0&0&1\end{bmatrix}\begin{bmatrix}x\\y\\1\end{bmatrix}$

Projective transformation

$\begin{bmatrix}x'\\y'\\w'\end{bmatrix}=\begin{bmatrix}*&*&*\\*&*&*\\*&*&*\end{bmatrix}\begin{bmatrix}x\\y\\1\end{bmatrix}$

(8 degrees of freedom), (x’, y’, w’) convert back to (x’/w’, y’/w’)

• Determine unknown transformations linear system, minimize square errors, least squares error $E=|Ax-b|_2^2$ $x=(A^TA)^{-1}A^Tb$

• Summary  ## Image alignment

• panoramas from image stitching when can we use homographies
• the scene is planar
• the scene is very far or has small depth variation, so approximatEly planar
• the scene is captured under camera rotation only, no translation or pose change
• Direct linear transform (DLT) Given ${(p_i’,p_i)}$, find the best $H$ such that $P’=HP$
• Linear system (can assume $h_9=1$, so 8 DO) • Expand • Replace $\alpha$ and rearrange into $A_ih=0$ for i-th point • Stack systems together and solve the least square problem to have $H$

• Image alignment pipeline
• Feature point detection (e.g. detect corners and extract features)
• Feature matching (match points from two images)
• Exhaustive search

for each feature in one image, look at all the other features in the other image(s)

• Hashing

compute a short descriptor from each feature vector, or hash longer descriptors (randomly)

• Nearest neighbor techniques
• Feature-space outlier rejection

sum of squared differences (SSD)

• 1-NN: SSD of the closest match
• 2-NN: SSD of the second-closest match
• calculate 1-NN / 2-NN, it’s a match if the ratio smaller than a threshold (e.g. threshold = 5)
• Homography estimation

Random Sample Consensus (RANSAC)

• Algorithm

Repeat until the best model is found with high confidence

• Sample (randomly) the number of points required to fit the model
• Solve for model parameters using samples
• Score by the fraction of inliers within a preset threshold of the model

e.g. if the model is a line, inliers are the points which distance to the line is smaller than a threshold • For image alignment (RANSAC)

• Repeat
• Get four pair of points randomly
• Compute H using DLT
• Count inliers (pair of points have similar projections)
• End if H has large number of inliers
• Recompute H using all inliers
Structure (scene geometry) Motion (camera geometry) Measurements
Pose Estimation known estimate 3D to 2D correspondences
Triangulation estimate known 2D to 2D correspondences
Reconstruction estimate estimate 2D to 2D correspondences

## Camera calibration

• Homogeneous corrdinates and inhomogeneous (heterogeneous) coordinates

Multiple View Geometry Section 2.2.1

• line

A line in the plane can be represented by $ax+by+c=0$, thus $(a,b,c)$ and for non-zero $k$, $k(a,b,c)$ represent the same line.

$(a,b,c)$ is the homogeneous representation of a line

• point

A point $(x,y)$ lies on a line $l=(a,b,c)$ iff $ax+by+c=0$, i.e. $\langle(x,y,z),(a,b,c)\rangle=0$. For non-zero $k$, $k(x,y,1)$ also satisfies the equation.

$(x,y,1)$ is the homogeneous representation of a point.

$(x,y)$ is the inhomogeneous representation of a point.

• Camera model

Multiple View Geometry Section 6.1 Assume

• The focal length of the camera is $f$
• A 3D world point is $(X,Y,Z)$, where the origin point is the center of camera $C$
• The image plane is at $Z=f$

Camera center is also known as optical center.

The point where the principal axis meets the image plane is called the principle point ($p$ in the image above).

The plane through the camera center parallel to the image plane is called the principal plane.

Camera model using homogeneous coordinates

Denote:

• World point $\mathbf{X}_\text{cam}=(X,Y,Z,1)$ in the camera coordinate frame.
• Image point $\mathbf{x}=(x,y,w)$ in the camera coordinate frame
• Camera projection matrix $P\in\mathbb{R}^{3\times4}$

Then $\mathbf{x}=P\mathbf{X}_\text{cam}$

• If the origin of image plane is at the principal point (intersection of image plane and principle axis), then

$(X,Y,Z)\mapsto (fX/Z,fY/Z)$ $\mathbf{x}=P\mathbf{X}=K\begin{bmatrix}I&0_{3,1}\end{bmatrix}\mathbf{X}_\text{cam}$ $K=\begin{bmatrix}f&0&0\\0&f&0\\0&0&1\end{bmatrix}$

$K$ is the camera calibration matrix.

• If the principal point’s coordinates in the image plane is $(p_x,p_y)$, then

$(X,Y,Z)\mapsto (fX/Z+p_x,fY/Z+p_y)$ $\mathbf{x}=P\mathbf{X}_\text{cam}=K\begin{bmatrix}I&0_{3,1}\end{bmatrix}\mathbf{X}_\text{cam}$ $K=\begin{bmatrix}f&0&p_x\\0&f&p_y\\0&0&1\end{bmatrix}$
• In general, world point is in the world coordinate frame

Denote

• the inhomogeneous coordinates of a point in the world frame as $\tilde{\mathbf{X}}_\text{world}\in\mathbb{R}^3$
• the inhomogeneous coordinates of the camera center $\tilde{\mathbf{C}}_\text{world}\in\mathbb{R}^3$
• the inhomogeneous coordinates of a point in the camera frame as $\tilde{\mathbf{X}}_\text{cam}\in\mathbb{R}^3$

Then we have $$\tilde{\mathbf{X}}_\text{cam}=R(\tilde{\mathbf{X}}_\text{world}-\tilde{\mathbf{C}}_\text{world})$$ using inhomogeneous coordinates.

In homogeneous coordinates, it’s $$\mathbf{X}_\text{cam}=\begin{bmatrix}R&-R\tilde{\mathbf{C}}\\0_{1,3}&1\end{bmatrix}\mathbf{X}_\text{world}$$

which gives:

$\mathbf{x}=K\begin{bmatrix}I&0_{3,1}\end{bmatrix}\mathbf{X}_\text{cam}=K\begin{bmatrix}I&0_{3,1}\end{bmatrix}\begin{bmatrix}R&-R\tilde{\mathbf{C}}\\0_{1,3}&1\end{bmatrix}\mathbf{X}_\text{world}=KR\begin{bmatrix}I&-\tilde{\mathbf{C}}\end{bmatrix}\mathbf{X}_\text{world}$

here $\mathbf{x}\in\mathbb{R}^3$ and $\mathbf{X}_\text{world}\in\mathbb{R}^4$, and we can denote $$P=K\begin{bmatrix}R&t\end{bmatrix}$$

This system has 9 degrees of freedom

• 3 for K ($f,p_x,p_y$)
• 3 for $R$ (can rotate about x,y,z-axis)
• 3 for $\tilde{\mathbf{C}}\in\mathbb{R}^3$
• Pixel might not be square, 10 DOF

$K=\begin{bmatrix}\alpha_x&0&p_x\\0&\alpha_y&p_y\\0&0&1\end{bmatrix}$
• Sensor might be skewed, finite projective camera, 11 DOF

$K=\begin{bmatrix}\alpha_x&s&p_x\\0&\alpha_y&p_y\\0&0&1\end{bmatrix}$
• weak perspective camera

• Geometric camera calibration (pose estimation)

Given matched points ${\mathbf{X}_i,\mathbf{x}_i}$ and a camera model $\mathbf{x}=P\mathbf{X}$, need to estimate $P$

• $\begin{bmatrix}x\\y\\w\end{bmatrix}=\mathbf{x}=P\mathbf{X}=\begin{bmatrix}p_1^T\\p_2^T\\p_3^T\end{bmatrix}\mathbf{X}$
• heterogeneous coordinates $(x’,y’)$ are $x’=\frac{p_1^T\mathbf{X}}{p_3^T\mathbf{X}},y’=\frac{p_2^T\mathbf{X}}{p_3^T\mathbf{X}}$, equivalent to

$p_1^T\mathbf{X}-p_3^T\mathbf{X}x’=0$

$p_2^T\mathbf{X}-p_3^T\mathbf{X}y’=0$

• Combine to a single system

$\begin{bmatrix}\mathbf{X}^T & 0_{1,3} & -x'\mathbf{X}^T\\0_{1,3}&\mathbf{X}^T&-y'\mathbf{X}^T\end{bmatrix}\begin{bmatrix}p_1\\p_2\\p_3\end{bmatrix}=0_{2,1}$
• Concatenate systems into one $Ap=0$

Solve $\arg\min|Ap|_2^2$ subject to $|p|_2^2=1$

• After getting $P$ need to find the intrinsic (of $K$) and extrinsic parameters

We know that $$P=K\begin{bmatrix}R&t\end{bmatrix}=KR\begin{bmatrix}I&-\tilde{\mathbf{C}}\end{bmatrix}=\begin{bmatrix}M&-M\tilde{\mathbf{C}}\end{bmatrix}$$ with $M=KR$

• So we can find $\tilde{\mathbf{C}}$ first as the projection of the camera center is origin.

$$P\begin{bmatrix}\tilde{\mathbf{C}}\\1\end{bmatrix}=\begin{bmatrix}M&-M\tilde{\mathbf{C}}\end{bmatrix}\begin{bmatrix}\tilde{\mathbf{C}}\\1\end{bmatrix}=0_{3,1}$$, so $P\tilde{\mathbf{C}}=0_{3,1}$

Do SVD of $P$ and $\tilde{\mathbf{C}}$ is the eigen vector with smallest eigen value

• Find $M=KR$ for right upper triangle matrix $K$ and orthogonal matrix $R$, QR decomposition!

• Pros and cons
• pros: simple, analytical
• cons: doesn’t minimize the correct error function
• Minimizing reprojection error

## Triangulation

• Definition

Given a set of (noisy) matched points ${(x_i,x_i’)}$ and camera matrices $P,P’$, estimate the 3D point $X$ in the world frame.

The model is $\mathbf{x}=P\mathbf{X}$, also $\mathbf{x}=\alpha P\mathbf{X}$ as we are using homogeneous coordinates.

• Cross product

 $c=a\times b= a b \sin\theta~n$, with $\theta$ the angle between $a$ and $b$, $n$ the unit vector perpendicular to $a$ and $b$, the direction is determined using right hand rule. Thus $a\times a = 0$
• Solution

$\mathbf{x}=\alpha P\mathbf{X}$ means $\mathbf{x}$ and $P\mathbf{X}$ has the same direction, thus, $\mathbf{x}\times P\mathbf{X}=0$, which gives

$\begin{bmatrix}x\\y\\1\end{bmatrix}\times\begin{bmatrix}p_1^T\mathbf{X}\\p_2^T\mathbf{X}\\p_3^T\mathbf{X}\end{bmatrix}=\begin{bmatrix}yp_3^T\mathbf{X}-p_2^T\mathbf{X}\\p_1^T\mathbf{X}-xp_3^T\mathbf{X}\\xp_2^T\mathbf{X}-yp_1^T\mathbf{X}\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$

Here, the last equation is a combination of the first two. By stacking the system for $P$ and $P’$, $X$ can be estimated using SVD.

## Epipolar geometry

• Epipole might not be always in the image. • Points on the epipolar line $l’$ marked as $x’$ are the potential matches for $x$. • Cross product

$a\times b=\begin{bmatrix}0&-a_3&a_2\\a_3&0&-a_1\\-a_2&a_1&0\end{bmatrix}\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix}=[a]_\times b$
• Essential matrix (maps a point to a line)

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view, i.e. $l’=Ex$.

Derivation

• Denote $t=o-o’$, then $x’=R(x-t)$ where $R$ is the rotation of view.
• Three vectors, $x,t,x’$ are coplanar, thus $x^T(t\times x)=0$ and also $(x-t)^T(t\times x)=0$
• Since $x’=R(x-t)$, we have ${x’}^TR=(x-t)$, then $$({x'}^TR)(t\times x)=({x'}^TR)([t]_\times x)={x'}^T(R[t]_\times) x=0$$
• $E=R[t]_\times$ is a 3*3 matrix

Properties

• Longuet-Higgins equation ${x’}^TEx=0$

• Epipolar lines
• $x^Tl=0$, $l=E^Tx’$
• ${x’}^Tl’=0$, $l’=Ex$

where an epipolar line $l$, i.e. $ax+by+c=0$, is denoted as $l=[a,b,c]^T$, and a point $x$ is on $l$ means $x^Tl=0$.

• Epipoles
• $Ee=0$
• ${e’}^TE=0$

Assumption We assume that the points aligned to camera coordinate axis (calibrated camera). The points $x,x’$ above are actually points in camera frame, should be denoted as $\hat{x},\hat{x}’$ and note the image points as $x,x’$, then we have $\hat{x}=K^{-1}x$.

Note that before we have $$\mathbf{x}=K\begin{bmatrix}I&0_{3,1}\end{bmatrix}\mathbf{X}_\text{cam}$$ where $\mathbf{x}$ is homogenous image point and $\mathbf{X}_\text{cam}$ is homogenous camera point.

• Fundamental matrix

The fundamental matrix is a generalization of the essential matrix, where the assumption of calibrated cameras is removed.

The equation of essential matrix is in fact ${\hat{x}’}^TE\hat{x}=0$, using $\hat{x}=K^{-1}x$, we have ${x’}^TFx=0$ with $F={K’}^{-T}EK^{-1}$, a 3*3 matrix.

Eight-point algorithm

## Stereo

• We have $\frac{X}{Z}=\frac{x}{f}, \frac{b-X}{Z}=\frac{x’}{f}$, therefore disparity $d=x-x’=\frac{bf}{Z}$ which is inversely proportional to depth $Z$. In the figure, orange lines are image planes and $O,O’$ are camera centers. • Stereo rectification • Compute Depth

To compute depth, need to make epipolar lines horizontal and calculate the depth from disparity $Z=\frac{bf}{d}$. The epipolar lines are horizontal when $R=I,t=(T,0,0)$, then

$E=\begin{bmatrix}0&0&0\\0&0&-T\\0&T&0\end{bmatrix}$

${x’}^TEx=0$ gives $v=v’$ where $x=(u,v,1)^T$. So the image of a 3D point will always be on the same horizontal line.

• Stereo rectification

Reproject image planes onto a common plane parallel to the line between camera centers. It requires two homographies (3*3 transform) for each input image.   Rotate the right camera by $R$, Rotate both cameras so that the epipoles are at infinity, Adjust the scale

• Stereo matching

For each pixel, find the epipolar line, scan the line for best match, and compute the depth from dispartiy

# Physics-based vision (not finished)

• Reflectance and image formation
• Photometric stereo
• Color

# Objects, faces, and learning

• Basics of probability
• K-means, KNN, PCA, SVM
• Bag of words
• Viola-Jones face detection
• Perceptron, backpropagation
• Convolutional neural networks

# Dealing with motion

## Optical flow

Assumptions:

• Color constancy

Brightness constancy for intensity images. Intensity is the same.

• Small motion

Pixels only moves a little. Displacement is small $(u\delta t, v\delta t)$.

$I(x+u\delta t,y+v\delta t,t+\delta t)=I(x,y,t)$

$\dfrac{dI}{dt}=\dfrac{\partial I}{\partial x}\dfrac{dx}{dt}+\dfrac{\partial I}{\partial y}\dfrac{dy}{dt}+\dfrac{\partial I}{\partial t}=0y$ ($dt$ is total derivative)

$I_xu+I_yv+I_t=0$

### Constant flow

Assumptions:

• Flow is locally smooth
• Neighboring pixels have same displacement

Use a 5*5 image patch, gives 25 equaltions:

$I_x(p_i)u+I_y(p_i)v+I_t(p_i)=0$

Can be solved by LS

$\begin{bmatrix}\sum\limits_iI_x(p_i)I_x(p_i) & \sum\limits_iI_x(p_i)I_y(p_i)\\\sum\limits_iI_x(p_i)I_y(p_i) &\sum\limits_iI_y(p_i)I_y(p_i)\end{bmatrix}\begin{bmatrix}u\\ v\end{bmatrix}=-\begin{bmatrix}\sum\limits_iI_x(p_i)I_t(p_i)\\ \sum\limits_iI_y(p_i)I_t(p_i)\end{bmatrix}$

Matrix is the same as Harris Corner Detector.

### Aperture problem

Horn-Schunck optical flow

$\min\limits_{u,v} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}$
• Enforce brightness constancy

$E_{d}(i, j)=\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}$

• Enforce smooth flow field

$E_{s}(i, j)=\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]$

## Image Alignment

$\min\limits_p \sum\limits_x[I(W(x;p))-T(x)]^2$ where

• $T$ is template image
• $W$ is warped image
• $I(x’)=I(W(x;p))$, $I$ is non-parametric

$I(W(x;p+\Delta p))\approx I(W(x;p))+\dfrac{\partial I(W(x;p))}{\partial x’}\dfrac{\partial W(x;p)}{\partial p}\Delta p$

Assume we have a initial guess of $p$, then solve for $\Delta p$ using LS

$\min\limits_p \sum\limits_x[I(W(x;p))+\nabla I \frac{\partial \mathbf{W}}{\partial p} \Delta p-T(x)]^2$ In conclusion, the update rules are:

$W(x;p)\leftarrow W(x;p+\Delta p)$

• Shum-Szeliski (compositional alignment)

$W(x;p)\leftarrow W(x;p)\circ W(x;\Delta p)$

• Baker-Matthews (inverse compositional alignment)

$W(x;p)\leftarrow W(x;p)\circ W(x;\Delta p)^{-1}$

## Tracking (KLT, Mean-Shift)

1. Find corners satisfying $\min(\lambda_1,\lambda_2)>\lambda$
2. For each corner compute displacement to next frame using the Lucas-Kanade method
3. Store displacement of each corner, update corner position
4. (optional) Add more corner points every M frames using 1
5. Repeat 2 to 4
6. Returns long trajectories for each corner point

### Mean-Shift

Like gradient descent of the kernel density estimate $P(x)$ A  ### Mean-Shift for images

Each pixel is point with a weight ### Non-rigid object tracking

• Target descriptor $q={q_1,\cdots,q_M}$ with $q_{m}=C \sum\limits_n k(|x_{n}|^{2}) \delta[b(x_{n})-m]$

• Candidate descriptor $p(y)={p_1(y),\cdots,p_M(y)}$ with $p_{m}(y)=C_{h} \sum\limits_{n} k(|\frac{y-x_{n}}{h}|^{2}) \delta[b(x_{n})-m]$

There’s only one target but multiple candidates.

• Similarity between target and candidate

$d(y)=\sqrt{1-\rho[p(y),q]}$

$\rho[p(y),q]=\frac{p(y)^\intercal q}{|p||q|}$ is the cosine distance minimize the distance $d$ is to maximize $\rho$   ## Temporal inference and SLAM

Temporal state model. States $X_t$ and observation $E_t$. Assumptions:

• stationary process $P(E_t|X_t)=P_t(E_t|X_t)$
• Markov $P(X_t|X_t-1,\cdots)=P(X_t|X_t-1)$
• prior state is known $X_0$ is known
• Joint probability $P(X_{0}) \prod_{t=1}^{T} P(X_{t} | X_{t-1}) P(E_{t} | X_{t})$ 